Als het echter geen gelijk aan (=) teken bevat, is het slechts een uitdrukking . Het heeft getallen, variabelen en operatoren, die worden gebruikt om de waarde van iets te laten zien. Bekijk dit artikel om de basisverschillen tussen expressie en vergelijking te begrijpen.
Vergelijkingstabel
Basis voor vergelijking | Uitdrukking | Vergelijking |
---|---|---|
Betekenis | Expression is een wiskundige uitdrukking die combinaties, getallen, variabelen en operatoren combineert om de waarde van iets te laten zien. | Een vergelijking is een wiskundige verklaring waarin twee uitdrukkingen gelijk aan elkaar worden gezet. |
Wat is het? | Een zinsfragment, dat staat voor een enkele numerieke waarde. | Een zin die gelijkheid tussen twee uitdrukkingen toont. |
Resultaat | Vereenvoudiging | Oplossing |
Relatie symbool | Nee | Ja, gelijkteken (=) |
Sides | Eenzijdig | Tweezijdig, links en rechts |
Antwoord | Numerieke waarde | Bewering, dwz waar of onwaar. |
Voorbeeld | 7x - 2 (3x + 14) | 7x - 5 = 19 |
Definitie van Expression
In de wiskunde wordt de uitdrukking gedefinieerd als een zin die getallen (constant), letters (variabelen) of hun combinatie samengevoegd door operatoren (+, -, *, /) groepeert om de waarde van iets weer te geven. Een uitdrukking kan rekenkundig, algebraïsch, polynomiaal en analytisch zijn.
Omdat het geen gelijk aan (=) teken bevat, toont het geen enkele relatie. Daarom heeft het niets als linker- of rechterkant. Een uitdrukking kan worden vereenvoudigd door dergelijke termen te combineren, of deze kan worden geëvalueerd door waarden in plaats van de variabelen in te voegen om een numerieke waarde te verkrijgen. Voorbeelden : 9x + 2, x - 9, 3p + 5, 4m + 10
Definitie van vergelijking
In de wiskunde betekent de term vergelijking een verklaring van gelijkheid. Het is een zin waarin twee uitdrukkingen op dezelfde manier worden geplaatst. Om aan een vergelijking te voldoen, is het belangrijk om de waarde van de betreffende variabele te bepalen; dit staat bekend als oplossing of wortel van de vergelijking.
Een vergelijking kan voorwaardelijk zijn of een identiteit. Als de vergelijking voorwaardelijk is, dan is de gelijkheid van twee uitdrukkingen waar voor een bepaalde waarde van de betrokken variabele. Als de vergelijking echter een identiteit is, is de gelijkheid waar voor alle waarden die door de variabele worden gehouden. Er zijn vier soorten vergelijkingen, die hieronder worden besproken:
- Eenvoudige of lineaire vergelijking : een vergelijking is lineair, is het hoogste vermogen van de betreffende variabele in 1.
Voorbeeld : 3x + 13 = 8x - 2 - Gelijktijdige lineaire vergelijking : wanneer er twee of meer lineaire vergelijkingen zijn die twee of meer variabelen bevatten.
Voorbeeld : 3x + 2y = 5, 5x + 3y = 7 - Kwadratische vergelijking : wanneer in een vergelijking het hoogste vermogen 2 is, wordt dit de kwadratische vergelijking genoemd.
Voorbeeld : 2x2 + 7x + 13 = 0 - Kubieke vergelijking : zoals de naam al doet vermoeden, is een kubieke vergelijking een graad 3.
Voorbeeld : 9x3 + 2x2 + 4x -3 = 13
Belangrijkste verschillen tussen expressie en vergelijking
De onderstaande punten geven een overzicht van de belangrijkste verschillen tussen expressie en vergelijking:
- Een wiskundige zin die getallen, variabelen en operatoren groepeert om de waarde van iets weer te geven, wordt uitdrukking genoemd. Een vergelijking wordt beschreven als een wiskundige verklaring met twee uitdrukkingen die gelijk zijn aan elkaar.
- Een uitdrukking is een zinsfragment dat staat voor een enkele numerieke waarde. In tegendeel, een vergelijking is een zin die gelijkheid tussen twee uitdrukkingen toont.
- De uitdrukking is vereenvoudigd, door evaluatie waarbij we waarden vervangen in plaats van variabelen. Omgekeerd is een vergelijking opgelost.
- Een vergelijking wordt aangegeven door een gelijkteken (=). Aan de andere kant is er geen relatie-symbool in een uitdrukking.
- Een vergelijking is tweezijdig, waarbij een gelijkteken de linker- en rechterkant scheidt. In tegenstelling, een expressie is eenzijdig, er is geen afbakening zoals links of rechts.
- Het antwoord van een uitdrukking is een uitdrukking of een numerieke waarde. In tegenstelling tot de vergelijking, die alleen waar of onwaar zou kunnen zijn.
Conclusie
Daarom is met bovenstaande uitleg duidelijk dat er een groot verschil bestaat tussen deze twee wiskundige concepten. Een uitdrukking onthult geen relatie terwijl een vergelijking dat doet. Een vergelijking bevat een 'gelijk aan teken', daarom wordt een oplossing weergegeven of wordt de waarde van de variabele weergegeven. In het geval van een expressie is er echter geen gelijkteken, dus er is geen definitieve oplossing en kan uiteindelijk niet de waarde van de betrokken variabele weergeven.